[cmucl-commit] [git] CMU Common Lisp branch master updated. snapshot-2014-06-37-g6795c64
Raymond Toy
rtoy at common-lisp.net
Sat Aug 2 02:15:11 UTC 2014
This is an automated email from the git hooks/post-receive script. It was
generated because a ref change was pushed to the repository containing
the project "CMU Common Lisp".
The branch, master has been updated
via 6795c643cd67e3ea2d950aa249cf39f929dc7798 (commit)
from 33a91f6afe5d68ea41a649db6e40d93d5896fb45 (commit)
Those revisions listed above that are new to this repository have
not appeared on any other notification email; so we list those
revisions in full, below.
- Log -----------------------------------------------------------------
commit 6795c643cd67e3ea2d950aa249cf39f929dc7798
Author: Raymond Toy <toy.raymond at gmail.com>
Date: Fri Aug 1 19:15:03 2014 -0700
Import log1p from fdlibm, as is.
diff --git a/src/lisp/s_log1p.c b/src/lisp/s_log1p.c
new file mode 100644
index 0000000..3d1059a
--- /dev/null
+++ b/src/lisp/s_log1p.c
@@ -0,0 +1,165 @@
+
+/* @(#)s_log1p.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* double log1p(double x)
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * 1+x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f
+ * may not be representable exactly. In that case, a correction
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ * and add back the correction term c/u.
+ * (Note: when x > 2**53, one can simply return log(x))
+ *
+ * 2. Approximation of log1p(f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
+ * (the values of Lp1 to Lp7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lp1*s +...+Lp7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log1p(f) = f - (hfsq - s*(hfsq+R)).
+ *
+ * 3. Finally, log1p(x) = k*ln2 + log1p(f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ * log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ * algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ * u = 1+x;
+ * if(u==1.0) return x ; else
+ * return log(u)*(x/(u-1.0));
+ *
+ * See HP-15C Advanced Functions Handbook, p.193.
+ */
+
+#include "fdlibm.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
+Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+static double zero = 0.0;
+
+#ifdef __STDC__
+ double log1p(double x)
+#else
+ double log1p(x)
+ double x;
+#endif
+{
+ double hfsq,f,c,s,z,R,u;
+ int k,hx,hu,ax;
+
+ hx = __HI(x); /* high word of x */
+ ax = hx&0x7fffffff;
+
+ k = 1;
+ if (hx < 0x3FDA827A) { /* x < 0.41422 */
+ if(ax>=0x3ff00000) { /* x <= -1.0 */
+ if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
+ else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
+ }
+ if(ax<0x3e200000) { /* |x| < 2**-29 */
+ if(two54+x>zero /* raise inexact */
+ &&ax<0x3c900000) /* |x| < 2**-54 */
+ return x;
+ else
+ return x - x*x*0.5;
+ }
+ if(hx>0||hx<=((int)0xbfd2bec3)) {
+ k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
+ }
+ if (hx >= 0x7ff00000) return x+x;
+ if(k!=0) {
+ if(hx<0x43400000) {
+ u = 1.0+x;
+ hu = __HI(u); /* high word of u */
+ k = (hu>>20)-1023;
+ c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
+ c /= u;
+ } else {
+ u = x;
+ hu = __HI(u); /* high word of u */
+ k = (hu>>20)-1023;
+ c = 0;
+ }
+ hu &= 0x000fffff;
+ if(hu<0x6a09e) {
+ __HI(u) = hu|0x3ff00000; /* normalize u */
+ } else {
+ k += 1;
+ __HI(u) = hu|0x3fe00000; /* normalize u/2 */
+ hu = (0x00100000-hu)>>2;
+ }
+ f = u-1.0;
+ }
+ hfsq=0.5*f*f;
+ if(hu==0) { /* |f| < 2**-20 */
+ if(f==zero) if(k==0) return zero;
+ else {c += k*ln2_lo; return k*ln2_hi+c;}
+ R = hfsq*(1.0-0.66666666666666666*f);
+ if(k==0) return f-R; else
+ return k*ln2_hi-((R-(k*ln2_lo+c))-f);
+ }
+ s = f/(2.0+f);
+ z = s*s;
+ R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
+ if(k==0) return f-(hfsq-s*(hfsq+R)); else
+ return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
+}
-----------------------------------------------------------------------
Summary of changes:
src/lisp/s_log1p.c | 165 ++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 165 insertions(+)
create mode 100644 src/lisp/s_log1p.c
hooks/post-receive
--
CMU Common Lisp
More information about the cmucl-commit
mailing list